
LESSON 15 - STUDY GUIDE

Abstract. In this lesson we will finally solve the problem of recovering a function on T from its Fourier

coefficients, by first analyzing the difficulties involved in summing the Fourier series from the convergence
of its partial sums, and then by devising more effective summability methods, which are related to

convolutions with approximate identities.

1. Fourier series: summability methods.

Study material: We will complete the study and analysis of ideas based on the topics contained in
section 2 - Summability in Norm and Homogeneous Banach Spaces from chapter I - Fourier
Series on T, corresponding to pgs. 8–16 in the second edition [1] and pgs. 9–17 in the third edition [2]
of Katznelson’s book, that we started in the previous lesson.

We finished the previous lesson by making the first observations about the convergence of the Fourier
series of function a f ∈ L1(T),

(1.1) S[f ] ∼
∞∑

n=−∞
f̂(n)eint,

with the goal of reconstructing the function from the sequence of its Fourier coefficients. Of course, the
traditional way that immediately comes to mind for summing the series is to consider the limit of the
sequence of its partial sums which, if one relates to the original real form of the Fourier series, with sines
and cosines, corresponds to the symmetric complex form

(1.2) lim
N→∞

N∑
n=−N

f̂(n)eint.

However, a more abstract point of view of looking at (1.1) would lead us to consider the Fourier series

as the Lebesgue integral of the sequence of Fourier coefficients {f̂(n)}n∈Z, over the measure space Z with
the counting measure. Abusing the notation a little bit, we could imagine the Fourier series as being the
same as the integral

(1.3)

∫
Z
f̂(n)eintdn,

which suddenly throws a slightly different light on the issue of its convergence and possible identity with
f . From a Lebesgue integral perspective, this integral only makes sense, independently of t, for integrable

functions over the integers, i.e. for sequences f̂ ∈ l1(Z). And, in that case, this integral looks exactly

analogous to the Fourier transform formula, that takes f ∈ L1(T) to its Fourier coefficients f̂(n),

F(f)(n) = f̂(n) =
1

2π

∫
T
f(t)e−intdt,

except for an insignificant change of sign in the exponential terms in (1.3).
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In fact, if we now observe that (Z,+), with the discrete topology, is also a locally compact abelian
group, and that its Haar measure is exactly the counting measure, then the Fourier transform of functions
in l1(Z) should exactly be given by some sort of integral like (1.3) over the space of integers Z yielding a
(L∞!) function on T.

In other words, if the universe had worked in our favor, we would have a fully symmetrical theory

where f and f̂ would be each other’s Fourier transforms, over each one’s locally compact abelian group
domain. Denoting by dt̃ = dt/2π the normalized Haar measure on T that we have been considering, we
would then have

f ∈ L1(T)→ f̂(n) =

∫
T
f(t)e−intdt̃ =

1

2π

∫
T
f(t)e−intdt ∈ l∞(Z),

and

f̂ ∈ l1(Z)→ f(t) =

∫
Z
f̂(n)eintdn =

∞∑
−∞

f̂(n)eint ∈ L∞(T).

This symmetry of Fourier transforms is the central idea of Pontryagin’s duality theory, in abstract har-
monic analysis: that, to functions on a locally compact abelian group, there corresponds a Fourier
transform which maps them to functions on a dual locally compact abelian group. And that the inverse
map is precisely also given by the Fourier transform on that dual group. The integers Z and the circle T
are then dual groups.

Unfortunately, however, this symmetry does not hold perfectly. As we saw in the previous lesson, the
best that we can expect from the Fourier coefficients of f ∈ L1(T) is that they decay to zero, from the
Riemann-Lebesgue lemma. But not that they are in l1(Z), in order for the Fourier series to be conveniently

interpreted as a properly defined Lebesgue integral over the integers Z. In fact, f̂ ∈ l1(Z) corresponds to
absolutely convergent series which, we also mentioned last lesson, yields continuous functions on T as a
result of uniform convergence. And, as we already know, C(T) and L1(T) sit on opposite extremes of the
regularity hierarchy, with the former being a very small subset of the latter. In other words, most of the
functions in L1(T) - even many continuous functions - will not have absolutely convergent Fourier series.

So, if we want to recover every function f ∈ L1(T) from its Fourier coefficients, we cannot hope to
sum the Fourier series as an l1(Z) integral and we must instead devise a summability method : some form

of assigning meaning to the sum (1.1), that coincides with the usual one when f̂ ∈ l1(Z), but which also
extends the definition even when it does not make sense as an absolutely convergent series. Of course,
the classical definition for summing series does exactly that, by taking the limit of the partial sums. It
is a summability method in the sense that it coincides with the Lebesgue integral definition over the
integers, but if a series is not absolutely convergent, i.e. Lebesgue integrable, and the limit (1.2) exists
it nevertheless still assigns a value to the sum of the series. We call it then conditional convergence of a
series and, from advanced calculus, it is well known to be highly unstable, for example from Riemann’s
theorem regarding changes of the order of summation.

But observing, as we did at the end of the last lesson, that the partial sums of the Fourier series

correspond to the convolution of f with the Dirichlet kernel DN (t) =
∑N
n=−N e

int,

(1.4) SN [f ](t) =

N∑
n=−N

f̂(n)eint = f ∗
N∑

n=−N
eint = f ∗DN (t),

this would then lead immediately to the convergence of Fourier series to f in Lp norms, had it been the
case that DN were an approximate identity. However, it is not, because the sequence of its L1 norms,
‖DN‖L1(T) - the so called Lebesgue constants - is unbounded, a property which will be left as an exercise.
And this is the crucial point that makes partial sum convergence of Fourier series a very ineffective and
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difficult method for inverting the Fourier transform in order to recover the original function, pointwise
or in Lp norm.

Nevertheless, from the more general and powerful vantage point that we have acquired, by studying
approximate identities in Lesson 11, we can now easily guess what the solution to our problem should be.
We should substitute the Dirichlet kernel by a different sequence of trigonometric polynomials that do
form an approximate identity. In fact, from Proposition 1.7, at the end of Lesson 13, we know that the
convolution of any trigonometric polynomial with f ∈ L1(T) will be another polynomial whose coefficients

involve the terms f̂(n). So, if a sequence of trigonometric polynomials can be found which really is an

approximate identity, then its convolution with f will depend only on the values of f̂ and converge to f
in the Lp(T) norm. We will thus have reconstructed f from its Fourier coefficients.

Needless to say that this elegant and general way of thinking about the problem was not how it
historically was first solved. At the beginning of the twentieth century, mathematicians first arrived at
convolutions with approximate identities by thinking of alternative summations methods for the Fourier
series, other than taking limits of the partial sums.

One way to think about general summability methods is to imagine multiplying the coefficients of a
series by a sequence of terms, depending on a parameter, that force it to be absolutely convergent even
when it initially is not. And then make the parameter converge to a limit at which point the multiplying
factors all become equal to one, corresponding then to the full series (1.1). For example, the partial sums
can be thought of as a cut-off in the frequencies between −N and N applied to the Fourier series

N∑
n=−N

f̂(n)eint =

∞∑
n=−∞

χ[−N,N ](n)f̂(n)eint,

where χ[−N,N ] is the characteristic function, over the integers, of the interval [−N,N ]. The parameter
here is evidently N which, as we take the limit N → ∞, makes χ[−N,N ](n) converge to the constant
sequence equal to one, thus fully eliminating the cut-off and yielding the complete series (1.1). So the
classical way of summing series is one particular choice of summability method in this sense. Here is
another one: multiply the Fourier coefficients by a fast decaying negative exponential term e−ε|n| for
ε > 0,

∞∑
n=−∞

e−ε|n|f̂(n)eint.

As the sequence of Fourier coefficients is bounded, e−ε|n|f̂(n) ∈ l1(Z) and so these series are absolutely
and uniformly convergent for every ε > 0 (of course they are not trigonometric polynomials, as the partial
sums are, but being absolutely convergent they work equally well). In this case, we should obviously take
the limit ε → 0 and this, generally, yields better summing results than the limit of the partial sums. It
is called Abel summability.

To understand why Abel summability is generally better than partial sum convergence, just recall
from Lesson 13 that the Fourier transform of the convolution of two functions is the product of the

Fourier transforms. So the multiplication of the Fourier coefficients f̂(n) by any summable sequence with
a parameter, say kε(n), should correspond, on the circle T side, to the convolution of f and a family of

functions Kε whose Fourier coefficients are K̂ε(n) = kε(n). We should thus have

S[f ∗Kε] ∼
∞∑

n=−∞
kε(n)f̂(n)eint,

with the final observation that, if the sequence kε(n) on the frequency side is such that limε→0 kε(n) = 1,
to make the modified series converge to the full Fourier series, then on the circle side we should have
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limε→0Kε = δ. In other words, summability methods, on the frequency side of the series, generally
correspond to convolutions with approximate identities, on the circle side. And, of course, what makes
Abel summability more effective than partial sum convergence is that, on the circle side it does correspond
to the convolution of f with a true approximate identity,

Kε(t) =

∞∑
n=−∞

e−ε|n|eint =
1− e−2ε

1− 2e−ε cos t+ e−2ε
,

even though this infinite series is not a polynomial, whereas the partial sum convergence corresponds to
the convolution with the Dirichlet kernel

DN (t) =

N∑
n=−N

eint =
sin(N + 1

2 )t

sin t
2

.

These arguments have not been rigorous up to this point, but the general idea helps to intuitively under-
stand the connection between summability methods, convolution kernels and approximate identities1.

Therefore, the fine line that separates a summability method from being effective, like the Abel summa-
bility, or not, like the convergence of partial sums, reduces to whether the corresponding convolution kernel
is an approximate identity or not. From a very formal and nonrigorous perspective, as above, they all
seem to perform the same job equally well, because their Fourier coefficients on the frequency side all
converge to one as the parameter tends to the limit, and therefore all the convolution kernels should, in
some way, converge to the Dirac delta on the circle T side. Of course, the subtlety lies in the strength
of the convergence being demanded. Convergence in Lp norm is rather strong, and therefore it requires
a definition of approximate identity, as we presented in Lesson 11, which the Dirichlet kernel does not
fulfill. Two important observations need to be made, though.

(1) The fact that the Dirichlet kernel is not an approximate identity does not mean that the partial
sums do not converge to f in the Lp norm. It just means that, with partial sums and the
Dirichlet kernel, we cannot just simply apply the theorem of Lp convergence of approximate
identities in a straightforward manner. In fact the partial sums of Fourier series do converge in
the Lp norm, for 1 < p < ∞, as we will see later in the course, as a consequence of one of the
most important theorems in harmonic analysis: Riesz’s theorem on the Lp boundedness of the
conjugation operator, equivalent to the Lp boundedness of the Hilbert transform.

(2) If we relax the convergence requirements to weaker topologies, for example to the very weak form
in the sense of distributions, then it becomes almost trivial to prove that the partial sums of
Fourier series do indeed converge to f in this weak topology.

Now that the general picture of summability methods is understood, we can focus on specific examples,
starting with what is arguably the best known, and historically the first such method: the Cesàro means
and corresponding Fejér kernel. The Cesàro means consist of the sequence of arithmetic means of partial
sums of the Fourier series

(1.5) σN (f) =
S0[f ] + S1[f ] + · · ·+ SN [f ]

N + 1
.

It is of course an elementary fact that whenever a sequence converges, the sequence of its arithmetic
means also converges to the same limit,

aN → a⇒ a0 + a1 + · · ·+ aN
N + 1

→ a.

1Approximate identities that arise from summability methods are also called summability kernels.
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But not the converse, so that the sequence of means generally converges in a broader range of cases. A
trivial example is the sequence aN = (−1)N which does not converge, but whose arithmetic means

a0 + a1 + a2 + · · · aN
N + 1

=
1− 1 + 1− 1 + 1− · · ·+ 1

N + 1
→ 0.

If we now use the linearity property of the convolution and (1.4), we can write the Cesàro means (1.5)
as a convolution

σN (f) = f ∗ D0 +D1 + · · ·+DN

N + 1
,

where the kernel

(1.6) KN (t) =
D0(t) +D1(t) + · · ·+DN (t)

N + 1
=

N∑
n=−N

(
1− |n|

N + 1

)
eint,

is called the Fejér kernel. It is a sequence of trigonometric polynomials, equal to the arithmetic means
of the Dirichlet kernel. We therefore have

(1.7) σN (f)(t) = f ∗KN (t) =

N∑
n=−N

(
1− |n|

N + 1

)
f̂(n) eint.

Observe that, unlike the Dirichlet kernel, which has Fourier coefficients with an abrupt cutoff at frequen-
cies −N and N , the Fejér kernel has coefficients which correspond to a triangular cut-off, with value one
at the frequency n = 0, down to zero, at frequencies n = ±N . This slightly smoother cut-off in frequency
space makes all the difference, because it turns the Fejér kernel into a true summability kernel. In fact,
from (1.6) it is clear that KN (t) ≥ 0 for all t ∈ T. Therefore, from (1.6), we have

1

2π

∫
T
KN (t) dt = ‖KN‖L1(T) = 1,

and so properties (1) and (2) in the definition of approximate identity (with the obvious adaptation from
Rn to T), in Lesson 11, are satisfied There remains to show property (3), for which it is helpful to have
the explicit formula for the Fejér kernel

KN (t) =
1

N + 1

(
sin N+1

2 t

sin t
2

)2

.

This can be easily computed from (1.6) (see Katznelson [1, 2], Chapter I, Section 2.5). And so, for any
δ > 0 and |t| ≥ δ we have

KN (t) ≤ 1

N + 1

1(
sin δ

2

)2 ,
which immediately shows that ∫

|t|≥δ
|KN (t)| dt ≤ 2π

N + 1

1(
sin δ

2

)2 → 0,

as N → 0, and that is property (3) in the definition of approximate identity. It is worthwhile comparing
the graphs of the Fejér kernel, which are plotted for N = 2, 4 and 6 in the following figure
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with the analogous graphs of the Dirichlet kernel

Coupling the fact that the Fejér kernel is an approximate identity, with Theorem 1.2 in Lesson 11, we
can then conclude the fundamental theorem for the convergence of Cesàro means.

Theorem 1.1. Let f ∈ Lp(T), with 1 ≤ p <∞. Then, the sequence of Cesàro means of f given by (1.5)
and (1.7) converges to f in the Lp(T) norm. If f ∈ C(T) then the convergence is uniform on T, i.e. in
the L∞(T) norm.

This is the powerful theorem that we have been seeking as it yields the recovery of f from the sequence
of its Fourier coefficients. Two very important corollaries immediately follow. The first one is a conse-
quence of the fact that, if a sequence converges, than the sequence of its arithemtic means necessarily
has to converge to the same limit. So that, once we now know that the Cesàro means converge in norm
to f , then if the partial sums are known to converge, necessarily their limits have to be the same.

Corollary 1.2. Let f ∈ Lp(T), with 1 ≤ p < ∞. Then, if the partial sums of the Fourier series of f
converge in the Lp(T) norm, necessarily their limit has to be f . The same conclusion holds if f ∈ C(T)
and the convergence of the Fourier series is known to hold uniformly on T, i.e. in the L∞(T) norm.

Observe that we are not stating that the Fourier series converges. This is only a conclusion about the
necessary value of the limit, if the convergence is known to hold a priori. So, either the partial sums of
Fourier series diverge, or, if they converge in norm, their limit can only be f .

Another major consequence of the convergence of Cesàro means in norm is the injectivity of the Fourier
transform operator F : L1(T)→ l∞(Z).

Corollary 1.3. Let f ∈ L1(T). If f̂(n) = 0 for all n ∈ Z then f = 0. Equivalently, if f, g ∈ L1(T) are

such that f̂(n) = ĝ(n) for all n ∈ Z, then f(t) = g(t) a.e. on T.

Notice, however, that one should not confuse the uniqueness of the Fourier coefficients, as stated in this
corollary - that to each function in L1(T) there corresponds its own unique frequency fingerprint in the
form of a sequence of Fourier coefficients - with the uniqueness of representation by a trigonometric series
- that to each representation of a function by a trigonometric series there corresponds a unique sequence
of coefficients, which should naturally be its Fourier coefficients. These are completely independent issues
and, while the first one is true from the previous corollary, the second might actually be false, depending
on the type of convergence being considered. To begin with, we are not at all saying that there is such a

representation f(t) =
∑∞
n=−∞ f̂(n)eint, in any traditional sense of convergence of the series (except for
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its Cesàro summability), from which the injectivity of the Fourier transform is being proved, let alone
pointwise convergence of its partial sums. So the uniqueness of Fourier coefficients from the previous
corollary is totally unrelated to the representation of functions by trigonometric series, as it holds even
for functions whose Fourier series diverge at every point.

On the other hand, even if there exists a trigonometric series such that

f(t) =

∞∑
n=−∞

cne
int,

for example in a pointwise sense of convergence, it is not possible to prove, in general, that cn = f̂(n).
Actually, trigonometric series can exhibit two quite surprising features, as we will see along this course:
a trigonometric series might very well converge pointwise for all t ∈ T but to a function that is not
even in L1(T), for which it does not make sense therefore to talk about Fourier coefficients; and different
sequences of coefficients can always be found for which the corresponding trigonometric series converge
almost everywhere to the same function, so that, even if that function is in L1(T), not only are the
coefficients not unique, some of them are are not the function’s Fourier coefficients either.

It is interesting to compare these phenomena with what happens for power series, where the exact
opposite occurs. For power series the coefficients of the representation are unique, obtained by successively
taking derivatives at the central point of the radius of convergence so that there is only one possible power
series representation of a smooth function: the Taylor series. On the other hand, several different smooth
(nonanalytic) functions can have the same sequence of derivatives at a point, so that the map from
smooth functions to their Taylor series coefficients is not injective.

In spite of the previous observations, for trigonometric series that converge in the L1(T) norm its
coefficients necessarily are the Fourier coefficients.

Proposition 1.4. Let
∑∞
−∞ cne

int, with cn ∈ C, be an L1(T) convergent trigonometric series, in the

sense that there exists f ∈ L1(T) such that the symmetric partial sums of the series converge to f in the

L1(T) norm. Then, f̂(n) = cn for all n ∈ Z.

Proof. We have ∥∥∥∥∥∥
N∑

j=−N
cje

ijt − f

∥∥∥∥∥∥
L1(T)

→ 0,

as N →∞. Therefore, as this difference is a sequence that converges to 0 in L1(T), from the properties of
Fourier coefficients seen in Lesson 13 (Corollary 1.5) we then know that its Fourier coefficients converge
to 0 in l∞(Z), i.e.

F

 N∑
j=−N

cje
ijt − f

 (n)→ 0,

uniformly in n ∈ Z as N → ∞. Finally, from the linearity of the Fourier transform and the simple fact

that for a trigonometric polynomial
∑N
−N cne

int the sequence of its Fourier coefficients is precisely cn,
for −N ≤ n ≤ N , and 0 for |n| > N , we conclude that

cn = F(f)(n) = f̂(n),

for all n ∈ Z. And this concludes the proof. �

Recall that L1(T) is the largest space in the hierarchy of Lp(T) and Ck(T) spaces, with the weakest
norm, bounded above by all the others. So that, if a trigonometric series converges in any other Lp(T)
space, with 1 ≤ p ≤ ∞, then it also converges in L1(T) and the same result as in the previous proposition
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holds. This conclusion is equally true for trigonometric series that converge in C(T) with the supremum
norm, i.e. uniformly, as well as absolutely, which is even stronger due to the Weierstrass M-test.

Another very important result that follows from the convergence of the Cesàro means is the density
of trigonometric polynomials in Lp(T) and C(T), the latter being considered a version of the Weierstrass
approximation theorem for trigonometric polynomials.

Corollary 1.5. The set of trigonometric polynomials is dense in Lp(T), for 1 ≤ p < ∞ and in C(T)
with the supremum (= L∞) norm.

As the trigonometric polynomials have Fourier coefficients which are zero, for frequencies larger than
their degree, the Riemann-Lebesgue Lemma is a trivial fact for them. On the other hand, by the density
result above, we can approximate any function f in L1(T) arbitrarily closely by trigonometric polynomials.
So, we could also have proved the Riemann-Lebesgue Lemma for L1(T) functions by approximation with
polynomials, instead of approximation by differentiable functions and integration by parts, as we did in
the previous lesson (see Katznelson’s proof of the Riemann-Lebesgue Lemma in [1, 2]).

To finish this lesson, we will just mention a couple of other important summability kernels. The first
of them is the Poisson kernel, given by

Pr(t) =

∞∑
n=−∞

r|n|eint =
1− r2

1− 2r cos t+ r2
,

where the series converges absolutely or any 0 < r < 1, yielding the function written explicitly on
the right hand side of this identity. For those that recall complex analysis, the Poisson kernel is used
to generate harmonic functions in the interior of the unit disk of the complex plane, from prescribed
values on the boundary circle. It has the disadvantage, when compared to the Fejér kernel, of not being
a trigonometric polynomial, but on the other hand as an absolutely convergent trigonometric series it
remains equally convenient for computations. And it is not hard to prove that it is a summability kernel,
i.e. an approximate identity, as r → 1. Therefore we obtain analogous convergence results as in Theorem
1.1 for the convolution

f ∗ Pr(t) =

∞∑
n=−∞

r|n|f̂(n)eint,

which are called the Abel means of the Fourier series, in analogy with the Cesàro means. In fact, if one
makes r = e−ε this is precisely the Abel summability method that we saw before. In other words, the
Poisson kernel is the approximate identity kernel corresponding to the Abel summability method. The
Poisson kernel is going to be a central ingredient in the important proof, later in the course, of Riesz’s
theorem on the Lp convergence of the partial sums of Fourier series, by using the complex analysis
methods related to harmonic functions on the unit disk and the conjugation operator.

The second approximate identity kernel worth mentioning is the de la Valée Poussin kernel

VN (t) = 2K2N+1(t)−KN (t).

Just like the Fejér kernel, the de la Valée Poussin kernel is also an approximate identity based on trigono-
metric polynomials, in this case of degree 2N + 1. Their advantage stems from the fact that, on the
frequency side, they correspond to the difference of two Fejér triangular cut-offs, one twice as large and
wide as the other, so that the resulting effect is that we obtain a plateau of Fourier coefficients equal to
one, between the frequencies ±(N + 1),

V̂N (n) = 1 for −N − 1 ≤ n ≤ N + 1,

and this is often a useful property because its convolution with f will then keep the Fourier frequencies
of f unchanged on this plateau.
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